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ABSTRACT

Conditions are given that imply there exists policies that
"minimize risk'" of undesirable events for stochastic harvesting models.
It is shown that for many problems, either such a policy will not exist,
or else it 1is an '"extreme'" policy that is equally undesirable. Techniques
are given to systematically tradeoff decreases in the long~run
expected return with decreases in the long-run risk. Several numerical
examples are given for models of salmon runs, when both population-

based risks and harvest-based risks are considered.
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An important consideration in managing ecosystems or wildlife
populations is the avoidance of undesirable occurrences, either to
the populations themselves, or to the economic agents acting on them.
This might mean minimizing the chance that a population becomes too
small; or minimizing environmental damage; or perhaps minimizing the
chance that the economic return is too small. Such ideas of minimum
risk are inherent in such legal concepts as optimal sustainable
population (OSP), required for the management of marine mammals in
the U.S., or in management under extended jurisdiction, where both
the health of the stocks and the health of the industry are vital
concerns.

Underlying these concerns is some notion of risk or uncertainty
in our management measures. This can arise from two causes. The
first cause of risk is risk in the system itself. For example, if
oceanographic systems affect fish stocks, we cannot with certainty
predict the stock size next year, but only predict with given
probability. The second cause of risk is uncertainty about these
probabilities. This second cause presumably would diminish as more
and more observations are made, and our knowledge about the system
increases.

In this paper we are concerned with the first cause of risk--true
uncertainty in the system. The results and techniques can be extended
to include the second case also (for extensions in related areas see
Rieder (1975) or van Hee (1978)). Risk enters our decisionmaking

process in three ways. Firstly, in constructing the probabilities
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of occurrence of given events. Secondly, in the decisionmaker's
attitude towards risk, e.g., how much of a gamble will be tolerated
in order to obtain a possibly higher total return. And finally, the
policy selected can be analyzed for the degree of risk that it
entails.

In this paper, an effort is made to make precise the rather
vague decisionmaking goal of "minimizing risk" in a dynamic context.
We will see initially that intuitively appealing definitions lead to
policies that are not reflective of the true complexity of the
problem (section III). As an alternative, acceptable tradeoffs
between low risk in the long run and high expected economic return
must be found. To this end, the concept of a "Pareto optimal solution"
is introduced, and its uses in evaluating trandoff curves are explored

(section IV). Several numerical examples of the techniques of

section IV are presented in section V.

IT. The Model
We restrict our attention to single species models without age
structure. Many of the results extend readily to more complex models,
but they neither help demonstrate the limitations of a notion like
"minimize risk," nor do they make any clearer the alternative methods
proposed. Hence only simple models will be explored. At the
beginning of each period t, the population size is "observed" to be
X, . During period t, z, of the population is removed, leaving a

t

population size of Y = %X, ~ 2z at the end of period t. The population
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size at the beginning of period t + 1 is assumed to be a random

function of Yeo that is:

X = Dt s[yt] ; Dt >0 w.p. 1. (2.1)

t+l

where Dl’ DZ’ ... are independent, identically distributed random
variables distributed as the generic variable D.

A one-period decision rule in period t is any rule that tells us
that 1f X, is the observed state at the start of period t, then take
action y, (e.g., harvest zt), and does so for all possible values of
X, . A policy 1 is a sequence of decision rules; that 1is, an n-period

policy T would be defined as:

T ={8, 6§

n 10 8gs eees dn}

Consider the following two problems:

(1) for fixed w, "minimize" Pr{xt_g w} for all t (2.2a)

(ii) for fixed n, "minimize" Pr{zt_g n} for all t (2.2b)

This implies finding some infinite horizon policy T* such that
this probability is always smallest.
To make this more precise, we need to define the notion of

stochastic dominance (Lehmann 1966; Keilson 1974; Barlow and Proschan

1975; O'Brien 1975). For two random variables x and y defined on a
common probability space , let F be the distribution function of x
and G the distribution function of y. Then x is said to be

ST -
stochastically dominant over y, written x > y if and only if:
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F(x(w)) f_G(y(w» for all w e Q

that is the random variable y has a distribution function that always
has more total accumulated probability at lower values. It is easy

ST.
to see that if x > y, then:

Pri{x < w} < Pr{y < w}

for all w.

In comparing two Markov chains {xn, n € NO} and {yn, n e NO}
defined on a common probability space, {xn} is said to be stochastically
dominant over {yn} if:

ST.

X 2y, for all n ¢ Ny

This implies (2.2a) or (2.2b); as we shall see, it is a useful

concept.

ITII. Policies That Are Stochastic Dominant

Our first theorem can be motivated by considering the one-period

problem: for a given x,, choose a Yy such that:

1

ST.
Dls[yll-i Dy slyl for 0 <y < X1

where s[*] is assumed to be unimodal.

Now:
Pr{Dl sly,;} < w} = Pr{Dl < —Sﬁl—]}

*
Consider the policy 61 defined by:

5 imum { }
1= minimum Ymax® *1
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where y_ is the argument where s[*] achieves its mode. Then, for

any other feasible decision rule 61:

iv

s[Gi(xl)] s[Gl(xl)] implies

w W

s[6](x)] "~ s[8;(x)]

A

implies

v w
P"{Dl = 5[6;(x1>]}ip"{"1 = s[61<x1>]}

which is the desired result.
Theorem 3.1 formalizes this result; the proof is given in the

appendix, as are all the proofs in this paper

Theorem 3.1 1In (2.1), assume s[*] is unimodal and obtains its

* k%
mode at y__ . Define the policy 7 = {51, 62, ... } where:

*
§ = minimum {x
t { t’ ymax}

*
*
Let {xg }'Eg the Markov chain that arises from following T , and

m
{xn} be the Markov chain that arises from following any other feasible

policy w. Then:

X > X for all n,
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The assumption that s[*] is unimodal is weak, as most standard
production models satisfy this assumption. The specific form

X = Dts[yt] is also common; see for example the models of

t+l
salmon runs in Bristol Bay developed by Mathews (1967).
It is worth comparing the policy that arises from theorem 3.1,

with the policy that:

® t-1
maximizes E{ I « P°* (x -y )
=1 t t

(3.1)

I = : < <
s.t. X Dts[yt], 0 < Yo <%

t+l t

and s[*] restricted as before. It is shown in Mendelssohn and

Sobel (1977) that the solution of (3.1) is of the form:

- *
Gt = minimum {xt, y }

*
where 0 <y <y

— “max’
As an example of the difference between these two policies,

consider the following model for salmon in the Wood River postulated

by Mathews (1967):

— d —
X 4,1 = () 4.077y exp{-0.800 y }

where d is distributed as N(O, 0.2098). Solved on a 51 point grid,

*
y = 0.700 (Mendelssohn 1978b) when a = 0.97. On this same grid,

y = 1.26 which is close to the true Ypax of 1.25 (the grid points

max

are in units of 106 fish).
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Two measures of interest will be examined. The first is the mean
per period harvest under the two policies. The second is the long-run

*
probability of being in any state.l/ Following {Gt} yields a mean per

¢
Lower case -l/This is the vector ¢, where ¢$(x) = I ¢(j) va'
phi jeXx J
period harvest of 0.916727 X 106 fish, following {St} yields a mean per

period harvest of 1.188993 X 106 fish.

Table 3.1 shows the distribution function of the stationary
probabilities arising from the two policies. The policy 8 which
maximizes the long-run expected harvest has a greater average
harvest compared with 6* of 272,263 fish, and with a lower variance
between harvest amounts. & also has a zero harvest only 3.28% of
the years, while the minimum risk policy 6* does not harvest 19.67Z%
of the time.

Conversely, the minimum risk policy almost halves the prob-
ability of being in the low population sizes of 420,000-840,000

Table 3.1 here fish, from 7.47 of the time to 4.1%Z of the time.

It is clear that these two policles are the two extremes. A
natural question is how to find policies, if any exist, that
greatly increase the expected total discounted harvest, at only a
small increase in risk.

Theorem 3.1 can be generalized slightly by assuming that
Xey1 = s[yt, D_]. 1In this model the random variable need not act

t
multiplicatively as before.
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Theorem 3.2 1f, except for the zero state, every x € X can be

reached with positive probability from every other x€ X, and (1) if

*
there exists a § such that:
* ST
sls (x), D;1 > sl6(x), D1]

for all feasible decision rules § and all x) € X; then

R S S

is a stochastically dominant policy.

*
(i1) if no such § exists, then there does not exist a policy that

is stochastically dominant.

O

The advantage of theorem 3.2 is that only a one-period problem
need be solved. Either that solution is the long-term solution also,
or if no solution exists for this "static'" problem, then no solution
exists for the larger problem.

I have not been able to find any policies that are stochastically
dominant when the criteria is (2.2b); nor have I been able to prove

that such a policy doesn't exist. However, I conjecture the following:

*
Conjecture 3.1 There 1s no policy ™ , such that the Markov chain
*

* U
of the amount harvested following 7 , {zn , nE NO}, compared with the

m
Markov chain {zn, n € NO} that arises from following policy T, satisfies:
z > zg for all n

for every possible feasible 7.
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It is worth reviewing where we are. We have found a stochastically
dominant policy under certain assumptions. This was found to produce
a solution thatvgreatly reduces the economic return from the harvest
(in fact, if s[+] is nondecreasing, then theorem 3.1 states that the

risk is minimized by not harvesting at all). Also, for certain other

models, it has been either proven or conjectured that there does not

exist a policy that minimizes the risk of an undesirable event. Finally,

a numerical example has led us to speculate that a large gain in

economic return can be obtained by incurring only a small increase in

the risk.

IV. Pareto Optimal Policies

In most decisionmaking situations, the decisionmaker usually is
faced with not one, but rather a myriad of conflicting objectives.
However, intuitively we often feel that even in this situation, there
is a "best'" policy in the sense that this '"best" policy most fairly
balances the different objectives. To examine all the tradeoffs
possible could be even more confusing than enlightening for the
decisionmaker. It would be desirable to reduce the set of policies
that need to be evaluated in examining these tradeoffs.

One such set of policies are policies that are '"Pareto optimal,"
or more precisely, whose expected returrs are Pareto optimal. 1If there
are two objectives, Pareto optimal policies have an intuitive
explanation: A policy is Pareto optimal if there is no other feasible
policy that does at least as well in any one of the objectives, and

strictly better in the other objective.
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apital pi To describe this more formally, let Il be the set of all possible
L Ll Ul 1
policies; let v = (vl, Vos e Vk) be the vector value of the k
m
objectives Vis Voo cees Vpo Let V be the set of all possible v for

*
w € [I. Then a policy m € Il is said to be Pareto optimal if there

does not exist some other policy m € Il such that

2/

—'When comparing two k-vectors x

(x)5 -vvs ) and y = (yy5 ooy i) s

b
[

y implies x i=1, ..., k; x> y imples x, > Yy» i=1, ..., k;

1 - Y 1

x > y imples x > y but x # y; and x > y implies xg >y, 1=1, oo, ke

For the problems of this section, we will restrict II to the class
of stationary policles, that is policies that follow the same one-period
decision rule in each period. There is a body of literature that shows
that for our models, when maximizing economic return over a very long
planning horizon, this is without loss of generality.

In section III, we were concerned with a class of problem that can
be viewed as a multiobjective problem: Any policy is evaluated in
terms of the expected (discounted) value of the harvest from that policy;
it is also evaluated in terms of the degree of long-run risk of an
undesirable event that occurs from following this policy. Our goal
now 1s to find the class of Pareto optimal policies between these two
objectives, and to find the tradeoff curve on this set of policies,

rather than trying to strictly optimize.
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To accomplish this, assume problem (3.1) has been discretized on a

set of states Xl

from each x¢ X, 1s given by Y(x) = {y]|0 <y < x; yeX}.

= (xl, Xps eees xk) and a set of feasible decisions

If it is

desired to maximize the long-run average harvest, or more formally:

E{ lim (l)
T + o0 T

t=

T
I (x_-y)
1t t

subject to the transition and harvest constraints, then this is

equivalent to solving the following linear programming problem

(DeGhellinck 1960; Manne 1960):

maximize z W ¢t
xexl y e Y(x) Y
s.t. W - I z WP =0 xe{xl/l}
yevt ¥ jex; ye v I
z z W = 1

xe:X1 ye Y(x)

u}}: >0 for all xeXl, y € Y(x)

X
where Gy is the one-period return of observing x and harvesting to y,

y
ij
is taken, and {xl/l}

base state.

constraints.

is the probability of going from state j to state x when action y

implies the set of state X1 less some arbitrary

(4.1)

That 1is, 1f there are k states, there will be k-1 of these
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At an optimal solution, Gz > 0 1f and only if choosing action y
from state x i1s an optimal decision, Also, the optimal variables Gi
have the interpretation of the probability of being in state x and
taking decision y. Suppose it is desired to limit the long-run
probability that the process 1s in states contained in some subset
X, of Xl. This can be included into (4.1) by amending the following

constraint:

5 5 W o<w (4.2)
x€X2 y € Y(x)

Similarly, if it is desired to limit the probability that the harvest

is less than a given amount, let Z, be the set of (x, y) palrs that

1

harvest the fixed amount or less. Then amend the constraint:

T u < (4.3)
(x,y) € Zy x

The advantage of this approach is that linear programming allows
for parametric analysis of the right-hand sides of the constraints.
Thus, it 1s simple to start off with w(resp.n) equal to one, that is
the unconstrained or maximum average return problem, and parameterize
it to zero, or the minimum long-run risk problem.

If instead it 1s desired to maximized the expected total
discounted return, then again, after discretizing the problem, a
solution can be found by solving the following linear programming

problem (d'Epenoux 1963)
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maximize I X u Gi
xexl ye Y(x)
s.t. X w - I X uiasz = v x&:X1 (4.4)
ye:Y(x)x jEleEY(j)
uw >0 for all xe:}(1
x =
y € Y(x)

where a is the discount factor, and the v, are chosen so that vx/Z'vi
i
is the initial probability of being in state x.
Recently Sobel (1978) has shown at an optimal solution to (4.4)

that:

(1-a) o’
x
v

{ i

= the normalized discounted fraction of years that

state x 1s entered and action y is taken

Note that this is different from the interpretation of the optimal
variablesin the average return problem, in that here the normalized
sum of presence or absence of being in state x and taking action y
is discounted, so that near future behavior is more important than
long-run behavior.

Constraints on these probabilities can be amended to (4.4) in a

similar manner as probabilistic constraints we amended to (4.3).
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Three caveats should be noted carefully. It is always advisable
to initially have w or N identically one and parameterize to zero.
This is because at zero, the problem may be infeasible, that is no
policy can achieve this constraint. To parameteirize an LP solution,
it 1s necessary to have an initial feasible solution.

Secondly, a randomized policy may become optimal. A randomized
policy is a policy that instead of choosing only one action from each
state, chooses one out of several actions from each state by a
"lottery" with a given distribution. While this is of some theoretic
importance, most policy makers today, would not recommend that we
manage our resources by tossing dice. However, if only one constraint
is amended to (4.2) then Kushner (1971) shows that at most one state
will have a randomized decision, and this will involve a "lottery"
between at most two actions feasible from that state.

Thirdly, Mendelssohn (1978a) has shown that the size of the grid
chosen and the procedure used to discretize the original problem can
greatly affect the final values of Gz for a given problem, as well as
the estimates of the stationary distribution ¢(x)}. Numerical
experiments in that paper show that the choice of grid can increase
our estimated risk by three to five times. Thus it is possible to
artificially create a critical tradeoff which does not exist in the

original, continuous state space problem

V. Numerical Examples

To see how these techniques work in practice, consider again the

model developed by Mathews (1967) for salmon runs in the Wood River:
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d
X4 = (e”) 4.077 Y, exp {-0.800 yt}

where d is distributed as N(O, 0.6768).
This 1s discretized on the following 16 point grid

Xl = (0, 0.467, 0.933, 1.400, 1.867, 2.333, 2.800, 3.267, 4.200,
4.667, 5.133, 5.600, 6.067, 6.533, 7.000)

in units of 106 fish. Numerical experiments suggest that for real
stability in terms of caveat three a 51 point grid should be used.
However, this 16 point grid produces an LP with 136 variables and 17
constraints; the 51 point grid produces an LP with 1,326 variables and
52 constraints a very large problem for 1llustrative purposes.
For management purposes, the larger grid size should be used. The
return function of interest is (3.1), and (4.4) rather than (4.1)
is analyzed. The reason is that while on a 51 point grid, the optimal
policy never goes to state zero, 1t 1is easy to demonstrate that on the
16 point grid every policy ultimately is absorbed in the zero state.
The discounted problem therefore takes into consideration shorter-run
behavior, or conversely, the time to absorption.

The optimal policy for (3.1) for this problem is a base stock

policy given by:
y, = winimum {x_, 0.933}

The following constraints were added to (4.4), one at a time:

(1) X, = {xeX; + x <0.467} ; v_ =1 for all xe X
2 1 X
P 3 0'123 W <o
x e X, yeY(x)
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(11) X, = {xe X} : x < 0.467} ; vy =0 ;v = \'s otherwise
z £ (0.03) ul <w
X € X2 y € Y(x)
(i11) X, = {xexl : x <0.933} ;v =1 for all x€X
L L 23 Y <w
x€X2 y€ Y(x)
(iv) Z1 = {(x, y) : x-y < 0.467} ; vy = 0, v, = Y5 otherwise

I (0.03) ui <n
(x, y) €2

The results are summarized in Table 5.1(a)-(d). For population
based probabilistic constraints, an optimal policy moves from a base
stock policy of 0.933 to a base stock policy of 1.400, which on the
16 point grid is the optimal minimum risk policy. While any of the
intermediate policies could be implemented, the shift between the two
base stock sizes does not occur in any monotone fashion, that is first
all the larger (or smaller) stock sizes switch their policy, and then
the other subset of states are switched over. This feature would
make an intermediate policy easier to implement, but does not occur.

The fourth column in Table 5.1 (1--a)/§vi ¢ (value) is in a
sense the "discounted mean" value of the harvest. If Gi is the
discounted fraction of years that state x is observed and action y is
taken, and 1if GZ is the one-period return, then the fourth column is

equivalent to:



Table 5.1 here
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xeX yeY(x) x
which is the one-period returns averaged over the discounted fraction
of years it occurs. Hence, it is a "discounted mean"” harvest (or
value of the value). Columns 1 and 4 of Table 5.1 provide the
information needed by the decisionmaker to determine the best tradeoff
between risk and return.

For the harvest based probability constraints, an optimal policy

is randomized for all alternative policies except for the original
base stock policy of 0.933 and the final policy. The final policy

is of some interest. Summarized it is:

States Harvest to Harvest amount
0 0 0
0.467 0.467 0
0.933 0.933 0
1.400 0.467 0.933
1.867 : 0.933 0.933
>1.867 1.400 x - 1.400

This policy is very similar to an optimal policy that arises when
"smoothing costs" (costs on the amount of year to year fluctuations in
the allowed harvest) are added to the problem, with a positive cost
only for decreasing the harvest (Mendelssohn 1978b). This suggests
that smoothing costs act like a probabilistic constraint, most likely
constraining the variance (or discounted variance) of the fraction of

periods a state-action combination occurs.
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Also, since randomized policies do not seem to occur in
population based constraints, but do occur in harvesting based
constraints, leads to the following conjecture: If for every state
that has at least one action included in a probabilistic constraint,
all actions are also included in the probabilistic constraint, then
a non-randomized policy will be optimal. Otherwise, a randomized
policy will be optimal whenever the probabilistic constraint is binding,
except perhaps at the two extreme points.

A proof of the conjecture has not been found. But trying to find
such rules are important. They lend the analyst insight into how to
set up a problem both so as to obtain the desired tradeoffs and to
obtain policies that can be implemented. And ultimately, the purpose of
all model building is the added insight they give to people who make

the final decisions.
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Appendix
A lemma 1s needed before the theorems can be proven. Lemma 1 is
a specialized version of theorem 3 in O'Brien (1975). The proof can

be found in O'Brien (1975).

Lemma 1. Let {xn, nezNO} and {yn, nE:NO} be two real-valued,

discrete time Markov processes. If:
ST.
<
(1) x5 <y,
(i1) Pr {xn+l.3 tlxn = x} < Pr {yn+l.3 c,yn =y}
for all t, n, and x <y
then:
there exists two new processes {in} and {§n} such that on a

common probability space §

(a) in is distributed as X for all n
(b) §n is distributed as Y, for all n

(c) in(w) f_yn(w), for all n, and all we{

Proof of theorem 3.1: For any Xy the policy

17 min{ymax’ xl}

*
can be shown to be stochastically dominant as follows. Let § be this

decision rule, and § any other one-period decision rule. Then:

W
Pr{XZ §_m|xl, 6} = Pr{Ds[G(xl)] < w} = Pr{D < 8[5(x1)]}'
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*
Since on the set {y : 0 <y < x;}, s[§ (x))] > s[8(x,)], then:

w < W

s(6" (x))]  8(6(x)]

*
or that § 1s stochastically dominant over 8. This implies part (i)
of lemma 1.

Conditioned on X the policy

*
= =G
Ve min{ym ’ xt}

compared to any other one-period decision rule § can be shown to satisfy:

*
Pr{xt+1-z w[xt, S }_3 Pr{xt+l Z_wlxt, 6}

by the same argument as above. This is part (ii) of lemma 1, and hence

the theorem is proven.

O

*
Proof of theorem 3.2. Part (i): By assumption, T 1is stochastically

dominant for x, given any ;- This is condition (i) of lemma 1.

2, xl, x2 € X, there exists a decision rule ¢

Suppose for some x1
PP t t t

< X
t_.

part of policy m, such that:
1 * 2
P s[G(xt), Dt] > wp > Pris($ (xt), Dt]_z wp for some we Q.
Since the Dt's are 1.i.d. random variables, this would imply:

Pr{s[d(xi), D1]

fv

*
w} > Pr{s[d (xi), DI]-Z w} for some we Q.
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*
However, this contradicts the assumption of the theorem that § is
a stochastically dominant decision rule for X, given Xq- This

contradiction implies condition (ii) of lemma 1.

Part (ii): The proof is by contradiction. Suppose a stochastically
dominant policy exists, say W* = {51, 5;, ....}, but no one-period
decision rule 6* exists that is stochastically dominant. By assumption,
any state except perhaps the absorbing state i1s reached with positive
probability. Then, conditioned on Xes there is no policy that 1is
stochastically dominant for xt+l’ since by assumption 6* does not
exist, and the transition probabilities are stationary. This contradicts
condition (ii) of lemma 1; from the proof of theorem3 in O'Brien it is

evident that this 1s sufficient to disprove that the chain resulting

*
from m 1s stochastically dominant.



Table 3.1 Cumulative stationary probability of the two policies.

State Pr{x < xIG*} Prix < x|&}
0.000 0.0000 0.000
0.140 0.0000 0.000
0.280 0.0000 0.0001
0.420 0.0006 0.0016
0.560 0.0044 0.0100
0.700 0.0164 0.0328
0.840 0.0412 0.0744
0.980 0.0806 0.1340
1.120 0.1335 0.2072
1.260 0.1967 0.2880
1.400 0.2664 0.3710
1.540 0.3387 0.4518
1.680 0.4105 0.5274
1.820 0.4794 0.5962
1.960 0.5438 0.6574
2.100 0.6027 0.7109
2.240 0.6558 0.7571
2.380 0.7031 0.7966
2.520 0.7447 0.8301
2.660 0.7811 0.8583
2.800 0.8127 0.8820
2.940 0.8400 0.9018
3.080 0.8635 0.9183
3.220 0.8836 0.9320
3.360 0.9008 0.9434

3.500 0.9155 0.9529



Table 3.1 (Continued).

State Pr{x < xIS*} Pr{x < x|&}
3.640 0.9280 0.9608
3.780 0.9387 0.9673
3.920 0.9478 0.9727
4.060 0.9555 0.9772
4.200 0.9621 0.9810
4,340 0.9677 0.9841
4.480 0.9724 0.9867
4.620 0.9764 0.9889
4.760 0.9798 0.9907
4.900 0.9827 0.9922
5.040 0.9852 0.9935
5.180 0.9873 0.9946
5.320 0.9891 0.9955
5.460 0.9907 0.9963
5.600 0.9920 0.9969
5.740 0.9931 0.9974
5.880 0.9941 0.9978
6.020 0.9949 0.9982
6.160 0.9956 0.9985
6.300 0.9962 0.9988
6.440 0.9967 0.9990
6.580 0.9972 0.9992
6.720 0.9976 0.9994
6.860 0.9979 0.9995
7.000 1.0000 1.0000
Mean harvest 0.916727 1.18899

Variance of harvest 0.89423 0.7874




Table 5.1(a). Bounds on discounted fraction of years X, < 0.467.

Total fraction Change in policy ' (1-a) (value)
of years, w State Action Value %v(i)
0.08836 Base stock at 0.933 656.721 1.2314
0.08836 1.867 1.400 656.721 1.2314
0.08735 6.533 1.400 611.634 1.1468
0.08733 3.267 1.400 610.725 1.1451
0.08702 4.667 1.400 596.745 1.1189
0.08696 1.400 1.400 593.696 1.1132
0.08608 4,200 1.400 554.016 1.0401
0.08596 2,333 1.400 548.917 1.0292
0.08518 2.800 1.400 513.729 0.9632
0.08466 7.000 1.400 490.039 0.9188
0.08464 3.733 1.400 489.073 0.9170
0.08444 5.133 1.400 480.126 0.9002
0.08439 6.533 1.400 478.026 0.8963
0.08437 5.600 1.400 477.267 0.8949
0.08434 No change 475.864
<0.08434 Infeasible

Initial distribution v(i) = 1 for all states i




Table 5.1(b). Bounds on discounted fraction of years xt < 0.467.

Total fraction Change in policy %) (value)
of years, w State Action Value {v(i)

0.02758 Base stock at 0.933 43.7814

0.02758 1.867 1.400 43.7814

0.02651 6.067 1.400 40.7756

0.02349 3.267 1.400 40.7150

0.02616 4.667 1.400 39.7830

0.02609 1.400 1.400 39.5797

0.02515 4.200 1.400 36.9344

0.02503 2.333 1.400 36.5945

0.02415 7.000 1.400 34.2486

0.02417 2.800 1.400 34.1856

0.02361 3.733 1.400 32.6049

0.02340 5.133 1.400 32.0084

0.02335 6.533 1.400 31.8684

0.02333 5.600 1.400 31.8178

0.02330 No change 31.7243
<0.02330 Infeasible

Initial distribution: v(0) =0, v(i) = 0.066667, 1 # 0




Table 5.1(c).

Bounds on discounted fraction of years X,

< 0.933.

Total fraction Change in policy (1-a)
of years, w State New action Value ET;?EB (value)
0.15580 Base stock at 0.933 656.721 1.2314
0.15580 1.867 1.400 656.721 1.2314
0.15299 3.267 1.400 611.634 1.1468
0.15212 6.067 1.400 597.667 1.1206
0.15206 4.667 1.400 596.745 1.1189
0.15187 1.400 1.400 593.696 1.1132
0.15041 4,200 1.400 554.016 1.0388
0.14909 2.333 1.400 548.917 1.0292
0.14690 2.800 1.400 513.729 0.9632
0.14543 3.733 1.400 490.039 0.9188
0.14487 5.133 1.400 481.101 0.9021
0.14474 7.000 1.400 479.004 0.8981
0.14468 5.600 1.400 478.026 0.8963
0.14466 6.533 1.400 476.623 0.8937
0.14455 No change 475.864
<0.14455 Infeasible

Initial distribution v(i) =1

for all states i




Table 5.1(d).

Bounds on discounted fraction of years z

< 0.467,

T T TR —

Total fraction Change in policy (1-a) (value)
of years, w State Action Value ??;?IT

0.30498 Base stock at 0.933 43.78143 1.3134
0.25000 1.400 Ra“g??g?fdo?gggee“ 42.98377  1.2900
0.16647 ;:32? Randomgéigz 1.400, 0.933  41.7717 1.2532
0.16549 2:323 Randomi;:g? 1.400, 0.933 1-0265  1.2308
0.16542 2:223 Randomised: 1.400, 0.933 @0-9748  1.2292
0.16521 g:ggg Randomi;:g? 1.400, 0.933 0-8160 1.2245
0.16251 2:383 Randomié:g? 1.400, 0.933 38.7655 1.1630
0.16216 3:388 Randomiéig? 1.400, 0.933 38-4950 1.1543
0.16043 ;:888 Randomi;:g? 1.400, 0.933 °/-1798 L.1154
0.16036 31333 Randomiéig? 1.400, 0.933 37-1263 1.1138
0.15974 g:igg Randonined: 1.400, 0.933 06-6°61  1.0997
0.15960 2:%33 Randomi;:g? 1.400, 0.933 36-9452 1.0964
0.15954 22233 Randomined: 1.400, 0.933 6-3010  1.0950
0.15944 5.600 1.400 36.42505  1.0928
<0.15944 Infeasible

Initial distribution:

v(0) = 0, v(i) = 0.066667




